
Heterogeneous programming for hybrid
CPU-GPU systems: Lessons learned from

computational chemistry

Jeff Hammond and Eugene DePrince

Argonne National Laboratory (LCF and CNM)

(Eugene moved to Georgia Tech last week)

NCAR – 8 September 2011

Jeff Hammond NCAR

Abstract (for posterity)

We have implemented complex computational chemistry algorithms known as

coupled-cluster theory (a quantum many-body method) using CUDA and

OpenMP for efficient execution on hybrid CPU-GPU systems. While many of

the floating-point operations of this code are performed inside of the CPU or

GPU BLAS library, the large memory footprint of the data-structures requires

careful consideration of data motion. The latest version of our code is able to

exploit multiple CPU cores and one GPU at the same time, maximizing overlap

of communication and computation using CUDA streams as well as dealing with

load-balancing via dynamically rescheduling computation between iterations.

The techniques used for our computational chemistry application should be

applicable to other domains, especially those which have large memory

footprints and use iterative solvers. In addition to our computational chemistry

application performance results, we will show microbenchmarks relevant to

GPU codes executing over multiple nodes using MPI. The role of GPUdirect

and related developments in the CUDA software stack will be discussed.

Jeff Hammond NCAR

Power

Power efficiency forces us to use “parallelism all the way down”. . .

Green500 summary:

1 Blue Gene/Q (2097.19 MF/W)

3 Intel+ATI (1375.88 MF/W)

4 Intel+NVIDIA (958.35 MF/W)

14 POWER7 (565.97 MF/W)

19 Cell-based (458.33 MF/W)

21 Intel-only (441.18 MF/W)

Jeff Hammond NCAR

Central Points

Given:

Power compels “kitchen sink” architecture design with
many-level parallelism (evolving from multi-level parallelism).

CPU+GPU just scratches the surface of programmer pain to
come.

Compilers will never be good enough.

Memory (bandwidth, capacity, granularity) will always be the
bottleneck.

10 GB

1000s of threads
(private cache)

per-node
shared memory

~1 million nodes
(hierarchical network)

50 GB/s

300 GB/s300 GB/s 300 GB/s300 GB/s300 GB/s300 GB/s 300 GB/s300 GB/s

10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB

Jeff Hammond NCAR

Central Points

Try:

High-level code generation (in addition to low-level code
generation).

Factorize code around inter/intra-node parallelism.

Dynamic task parallelism on top of data-parallelism

Asynchrony, overlap, nonblocking, one-sided, etc.

Performance portability impossible with traditional languages
(Fortran, C, C++).

Regarding PGAS, compilers that cannot block for cache should not
be allowed to generate network communication.

Jeff Hammond NCAR

Tensor Contraction Engine

Jeff Hammond NCAR

Tensor Contraction Engine

What does it do?

1 GUI input quantum many-body theory e.g. CCSD.

2 Operator specification of theory (as in a theory paper).

3 Apply Wick’s theory to transform operator expressions into
array expressions (as in a computational paper).

4 Transform input array expression to operation tree using many
types of optimization (i.e. compile).

5 Produce Fortran+Global Arrays+NXTVAL implementation

Developer can intercept at various stages to modify theory,
algorithm or implementation.

Jeff Hammond NCAR

TCE Input

We get 73 lines of serial F90 or 604 lines of parallel F77 from this:

1.0/1.0 Sum(g1 g2 p3 h4) f(g1 g2) t(p3 h4) { g1+ g2

} { p3+ h4 }
1.0/4.0 Sum(g1 g2 g3 g4 p5 h6) v(g1 g2 g3 g4) t(p5 h6

) { g1+ g2+ g4 g3 } { p5+ h6 }
1.0/16.0 Sum(g1 g2 g3 g4 p5 p6 h7 h8) v(g1 g2 g3 g4)

t(p5 p6 h7 h8) { g1+ g2+ g4 g3 } { p5+ p6+ h8 h7 }
1.0/8.0 Sum(g1 g2 g3 g4 p5 h6 p7 h8) v(g1 g2 g3 g4) t(

p5 h6) t(p7 h8) { g1+ g2+ g4 g3 } { p5+ h6 } { p7+ h8 }

LaTeX equivalent of the first term:∑
g1,g2,p3,h4

fg1,g2tp3,h4{g
†
1g2}{p

†
3h4}

Jeff Hammond NCAR

Summary of TCE module

http://cloc.sourceforge.net v 1.53 T=30.0 s

Language files blank comment code

Fortran 77 11451 1004 115129 2824724

SUM: 11451 1004 115129 2824724

Only <25 KLOC are hand-written; ∼100 KLOC is utility code
following TCE data-parallel template.

Expansion from TCE input to massively-parallel F77 is ∼ 200.

Jeff Hammond NCAR

TCE Template

Pseudocode for Ra,b
i ,j = Rc,d

i ,j ∗ V
c,d
a,b :

for i,j in occupied blocks:

for a,b in virtual blocks:

for c,d in virtual blocks:

if symmetry criteria(i,j,a,b,c,d):

if dynamic load balancer(me):

Get block t(i,j,c,d) from T

Permute t(i,j,c,d)

Get block v(a,b,c,d) from V

Permute v(a,b,c,d)

r(i,j,c,d) += t(i,j,c,d) * v(a,b,c,d)

Permute r(i,j,a,b)

Accumulate r(i,j,a,b) block to R

Jeff Hammond NCAR

TCE for Heterogeneous Systems

New Get and Accumulate that communicate from/to remote
memory to GPU instead of CPU.

Implement Permute in GPU code, use GPU BLAS.

In this scenario, porting to a new heterogeneous architecture
requires a few hundred lines of code.

This is only a first-order solution:

Load-balancing is significantly harder when the compute
portion goes significantly faster.

Single-level blocking not optimal for heterogenous nodes.

Jeff Hammond NCAR

Quantum Chemistry on
Heterogeneous Nodes

Jeff Hammond NCAR

Coupled-cluster theory

|CC 〉 = exp(T)|0〉
T = T1 + T2 + · · ·+ Tn (n� N)

T1 =
∑
ia

tai â
†
aâi

T2 =
∑
ijab

tabij â†aâ
†
bâj âi

|ΨCCD〉 = exp(T2)|ΨHF 〉
= (1 + T2 + T 2

2)|ΨHF 〉
|ΨCCSD〉 = exp(T1 + T2)|ΨHF 〉

= (1 + T1 + · · ·+ T 4
1 + T2 + T 2

2 + T1T2 + T 2
1T2)|ΨHF 〉

Jeff Hammond NCAR

Coupled cluster (CCD) implementation

Rab
ij = V ab

ij + P(ia, jb)

[
T ae
ij I be − T ab

im Imj +
1

2
V ab
ef T

ef
ij +

1

2
T ab
mnI

mn
ij − T ae

mj I
mb
ie − Ima

ie T eb
mj + (2T ea

mi − T ea
im)Imb

ej

]
I ab = (−2Vmn

eb + Vmn
be)T ea

mn

I ij = (2Vmi
ef − V im

ef)T ef
mj

I ijkl = V ij
kl + V ij

ef T
ef
kl

I iajb = V ia
jb −

1

2
V im
eb T

ea
jm

I iabj = V ia
bj + V im

be (T ea
mj −

1

2
T ae
mj)−

1

2
Vmi
be T

ae
mj

Tensor contractions currently implemented as GEMM plus PERMUTE.

Jeff Hammond NCAR

Relative Performance of GEMM

GPU versus SMP CPU (8 threads):

 0

 100

 200

 300

 400

 500

 600

 700

 0 1000 2000 3000 4000 5000

pe
rf

or
m

an
ce

 (
gi

ga
flo

p/
s)

rank

SGEMM performance

X5550
C2050

CPU = 156.2 GF
GPU = 717.6 GF

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500 4000

pe
rf

or
m

an
ce

 (
gi

ga
flo

p/
s)

rank

DGEMM performance

X5550
C2050

CPU = 79.2 GF
GPU = 335.6 GF

We expect roughly 4-5 times speedup based upon this evaluation
because GEMM should be 90% of the execution time.

Jeff Hammond NCAR

CPU or GPU CCD

This code was written to minimize communication. Only one term
is memory-bound and requires communication during the iteration.

C2050 C1060 X5550

C8H10 0.3 0.8 1.3
C10H12 0.8 2.5 3.5
C12H14 2.0 7.1 10.0
C14H10 2.7 10.2 13.9
C14H16 4.5 16.7 21.6
C16H18 10.5 35.9 50.2
C18H20 20.1 73.0 86.6

Iteration time in seconds for double precision.

Jeff Hammond NCAR

Numerical Precision versus Performance

Iteration time in seconds
C1060 C2050 X5550

molecule SP DP SP DP SP DP

C8H10 0.2 0.8 0.2 0.3 0.7 1.3
C10H12 0.7 2.5 0.4 0.8 2.0 3.5
C12H14 1.8 7.1 1.0 2.0 5.6 10.0
C14H10 2.6 10.2 1.5 2.7 8.4 13.9
C14H16 4.1 16.7 2.4 4.5 12.1 21.6
C16H18 9.0 35.9 5.0 10.5 28.8 50.2
C18H20 17.2 73.0 10.1 20.1 47.0 86.6

Mixed-precision is essentially trivial when you have a relaxation
solver and is always worth at least 2x (except on BG).

Jeff Hammond NCAR

CPU and GPU CCSD

This code was rewritten to minimize memory, overlap
communication. Focus on overlap and pipelining.

Hybrid CPU Molpro

C8H10 0.6 1.4 2.4
C10H12 1.4 4.1 7.2
C12H14 3.3 11.1 19.0
C14H10 4.4 15.5 31.0
C14H16 6.3 24.1 43.1
C16H18 10.0 38.9 84.1
C18H20 22.5 95.9 161.4

Iteration time in seconds for double precision.

Staticly distribute most diagrams between GPU and CPU,
dynamically distribute leftovers. Small terms always done on CPU.

Jeff Hammond NCAR

Details

1 Preallocate buffers on GPU, used pinned buffers on CPU.

2 Put GPU transfers and kernels on a stream.

3 Backfill with CPU computation.

4 See who finishes first, rebalance next iteration.

Complications:

CUBLAS stream support took a while.

Multi-GPU nodes and threads was a pain; now using 1 GPU
per MPI rank.

Older gripes:

Early CUBLAS required us to pad dimensions.

GPUdirect two years later than I wanted it.

Jeff Hammond NCAR

Lessons learned

Do not GPU-ize legacy code!

Reimplementation from scratch was faster and easier.
Verification of new implementation is a challenge.

Task-parallelism absolutely critical for heterogeneous
utilization.

Threading ameliorates memory capacity and BW bottlenecks.
(How many cores required to saturate STREAM BW?)

Data-parallel kernels very easy to implement in both OpenMP
and CUDA.

Careful organization of asynchronous data movement hides
entire PCI transfer cost for non-trivial problems.

Näive data movement leads to 2x; smart data movement leads
to 8x.

Jeff Hammond NCAR

Acknowledgments

Jeff Hammond NCAR

Hardware Details

CPU GPU
X5550 2 X5550 C1060 C2050

processor speed (MHz) 2660 2660 1300 1150
memory bandwidth (GB/s) 32 64 102 144

memory speed (MHz) 1066 1066 800 1500
ECC available yes yes no yes
SP peak (GF) 85.1 170.2 933 1030
DP peak (GF) 42.6 83.2 78 515

power usage (W) 95 190 188 238

Note that power consumption is apples-to-oranges since CPU does
not include DRAM, whereas GPU does.

Jeff Hammond NCAR

